Natural Capital and Ecosystem Services

Steve Carpenter, srcarpen@wisc.edu

The big question:

Is the global human-environment system on a trajectory that can maintain or advance human well-being over the long run?

The earth system, and smaller ecosystems within the earth system, support human well-being in many different ways.

We have sparse knowledge of:

★How dimensions of human life-support interact and change over time

★ How human actions alter these dynamics

★ How policies affect human actions

Topics:

Ecosystem services and natural capital

System definition and the problem of scale

Thresholds and big changes

Unknown futures and scenarios

Topics:

Ecosystem services and natural capital

System definition and the problem of scale

Thresholds and big changes

Unknown futures and scenarios

Ecosystem Services

Benefits that people obtain from ecosystems: *Provision of food, fiber, water, pharmaceuticals etc. *Regulation of water flow and quality, air quality, climate, soil fertility, disease etc. *Cultural values

Ecosystem Services Addressed by the Millennium Ecosystem Assessment

7

Ecosystem Services

Benefits that people obtain from ecosystems: Provision of food, fiber, water, pharmaceuticals etc. Regulation of water flow and quality, air quality, climate, soil fertility, disease etc. Cultural values

Natural Capital

The capacity of an ecosystem to provide services

Natural Capital and Ecosystem Services of a Marine Fishery

Natural Capital and Ecosystem Services of an Agricultural Watershed

Ecosystem Services: Food & Fiber Production, Freshwater, Flood Regulation, Nutrient Regulation, Carbon Sequestration, Recreation, Aesthetics, etc.

Natural Capital and Service Flows Depend on How an Ecosystem is Used:

Topics:

Ecosystem services and natural capital

System definition and the problem of scale

Thresholds and big changes

Unknown futures and scenarios

Questions to ask at the start of (and periodically in the course of) analyzing a system:

1. What is the question?

2. What are the boundaries of the ecosystem? What is the spatial grain of the analysis?

3. What is the time horizon? What is the frequency of measurement or updating model solutions?

4. What are the inputs and drivers?

5. What are the outputs?

6. What are the components within the system?

7. What are the connections and feedbacks within the system?

8. Recheck:

Is it the right question? What information do we need to answer the question? Will we get the information we need from this analysis? Repeat the sequence as needed.

Key Interactions Involving Natural Capital and Ecosystem Services

Carpenter, Matson & Turner, unpublished

Natural Capital & Ecosystem Services: Connections Across Scales

Connections to Smaller Systems

Topics:

Ecosystem services and natural capital

System definition and the problem of scale

Thresholds and big changes

Unknown futures and scenarios

Changes in Natural Capital and Ecosystem Services Can be Big, Fast and Inconvenient.

Tipping Elements of the Earth System

Big changes in ecosystem services are hard to predict.

- Lack of informationNonlinearity
- > Stochasticity
- Human volition

Topics:

Ecosystem services and natural capital

System definition and the problem of scale

Thresholds and big changes

Unknown futures and scenarios

All Possible Futures

Unasked Questions

22

Imaginable Outcomes

Recognized Uncertainties

Models & Observations

Based on

Carpenter, Bennett, & Peterson., 2006, Ecology & Society http://www.ecologyandsociety.org/vol11/iss1/art29/

Cluster the Samples

Next, evaluate the trajectory of each scenario over time, and compare the results.

Example from Millennium Ecosystem Assessment, http://www.MAweb.org

REGIONAL EXAMPLE:

Yahara Lake District

North Temperate Lakes LTER

Madison, Wisconsin

http://lter.limnology.wisc.edu

Framework for Yahara Watershed Assessment

Yahara Scenario Assessment: Approach

<u>Perspectives</u> (of public, stakeholders, decision makers) on the Yahara Watershed and its plausible futures <Workshops, Consultations, Focus Groups, Surveys>

Synthesis and communication: Scenario narratives Outreach products <Workshops, Water Walk, TV documentary, etc.> Qualitative scenario storylines: Plausible contrasting outcomes "How could that happen?" <Scenario Design Team>

Model analyses of scenarios: Storylines → Driver trajectories Coupled models for land use/cover, terrestrial ecosystems, hydrology, aquatic ecosystems <Scenario Design Team, Modeling Team>

Carpenter, Kucharik, Loheide, Rissman, Turner unpublished

At present, no approach has a monopoly on answering the big question:

"Is the global human-environment system on a trajectory that can maintain or advance human well-being over the long run?"

Systematic analysis of ecosystem services (benefits that people obtain from nature) and natural capital (capacity of a system to generate ecosystem services) is one promising approach.

We need coordinated, interdisciplinary, place-based studies of

How dimensions of human life-support interact and change over time

★ How human actions alter these dynamics

★ How policies affect human actions